MathNet.Numerics 5.0.0-beta02

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .NET 5.0 or higher, .NET Standard 2.0 and .NET Framework 4.6.1 or higher, on Windows, Linux and Mac.

Showing the top 20 packages that depend on MathNet.Numerics.

Packages Downloads
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
3

BUG: Fix sparse inplace pointwise multiplication and division ~jkalias Code maintenance, prefer looping over local arrays

.NET Framework 4.6.1

.NET Framework 4.8

  • No dependencies.

.NET 5.0

  • No dependencies.

.NET 6.0

  • No dependencies.

.NET Standard 2.0

  • No dependencies.

Version Downloads Last updated
6.0.0-beta1 5 11/17/2024
5.0.0 2 11/19/2024
5.0.0-beta02 3 11/19/2024
5.0.0-beta01 4 11/19/2024
5.0.0-alpha16 4 11/19/2024
5.0.0-alpha15 2 11/19/2024
5.0.0-alpha14 3 11/19/2024
5.0.0-alpha13 2 11/19/2024
5.0.0-alpha12 2 11/19/2024
5.0.0-alpha11 2 11/19/2024
5.0.0-alpha10 2 11/19/2024
5.0.0-alpha09 2 11/19/2024
5.0.0-alpha08 2 11/19/2024
5.0.0-alpha07 4 11/19/2024
5.0.0-alpha06 2 11/19/2024
5.0.0-alpha05 2 11/19/2024
5.0.0-alpha04 3 11/19/2024
5.0.0-alpha03 2 11/19/2024
5.0.0-alpha02 2 11/19/2024
5.0.0-alpha01 2 11/19/2024
4.15.0 3 11/19/2024
4.14.0 2 11/19/2024
4.13.0 2 11/19/2024
4.12.0 3 11/19/2024
4.11.0 2 11/19/2024
4.10.0 4 11/19/2024
4.9.1 2 11/19/2024
4.9.0 2 11/19/2024
4.8.1 2 11/19/2024
4.8.0 2 11/19/2024
4.8.0-beta02 3 11/19/2024
4.8.0-beta01 3 11/19/2024
4.7.0 2 11/19/2024
4.6.0 2 11/19/2024
4.5.1 2 11/19/2024
4.5.0 2 11/19/2024
4.4.1 2 11/19/2024
4.4.0 2 11/19/2024
4.3.0 2 11/19/2024
4.2.0 2 11/19/2024
4.1.0 2 11/19/2024
4.0.0 2 11/19/2024
4.0.0-beta07 3 11/19/2024
4.0.0-beta06 3 11/19/2024
4.0.0-beta05 3 11/19/2024
4.0.0-beta04 4 11/19/2024
4.0.0-beta03 3 11/19/2024
4.0.0-beta02 3 11/19/2024
4.0.0-beta01 3 11/19/2024
4.0.0-alpha04 2 11/19/2024
4.0.0-alpha03 2 11/19/2024
4.0.0-alpha02 2 11/19/2024
4.0.0-alpha01 2 11/19/2024
3.20.2 2 11/19/2024
3.20.1 3 11/19/2024
3.20.0 2 11/19/2024
3.20.0-beta01 3 11/19/2024
3.19.0 2 11/19/2024
3.18.0 2 11/19/2024
3.17.0 3 11/19/2024
3.16.0 2 11/19/2024
3.15.0 2 11/19/2024
3.14.0-beta03 3 11/19/2024
3.14.0-beta02 3 11/19/2024
3.14.0-beta01 4 11/19/2024
3.13.1 2 11/19/2024
3.13.0 2 11/19/2024
3.12.0 2 11/19/2024
3.11.1 3 11/19/2024
3.11.0 2 11/19/2024
3.10.0 2 11/19/2024
3.9.0 2 11/19/2024
3.8.0 2 11/19/2024
3.7.1 2 11/19/2024
3.7.0 2 11/19/2024
3.6.0 2 11/19/2024
3.5.0 2 11/19/2024
3.4.0 2 11/19/2024
3.3.0 2 11/19/2024
3.3.0-beta2 3 11/19/2024
3.3.0-beta1 3 11/19/2024
3.2.3 2 11/19/2024
3.2.2 4 11/19/2024
3.2.1 2 11/19/2024
3.2.0 4 11/19/2024
3.1.0 2 11/19/2024
3.0.2 4 11/19/2024
3.0.1 2 11/19/2024
3.0.0 2 11/19/2024
3.0.0-beta05 3 11/19/2024
3.0.0-beta04 4 11/19/2024
3.0.0-beta03 3 11/19/2024
3.0.0-beta02 3 11/19/2024
3.0.0-beta01 3 11/19/2024
3.0.0-alpha9 2 11/19/2024
3.0.0-alpha8 2 11/19/2024
3.0.0-alpha7 2 11/18/2024
3.0.0-alpha6 4 11/19/2024
3.0.0-alpha5 2 11/19/2024
3.0.0-alpha4 2 11/19/2024
3.0.0-alpha1 2 11/19/2024
2.6.2 2 11/19/2024
2.6.1 2 11/19/2024
2.6.0 2 11/19/2024
2.5.0 2 11/19/2024
2.4.0 2 11/19/2024
2.3.0 2 11/19/2024
2.2.1 2 11/19/2024
2.2.0 2 11/19/2024
2.1.2 2 11/19/2024
2.1.1 2 11/19/2024