MathNet.Numerics 4.2.0

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net Framework 4.0 or higher and .Net Standard 1.3 or higher, on Windows, Linux and Mac.

Showing the top 20 packages that depend on MathNet.Numerics.

Packages Downloads
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
5

Native Providers: MklProvider and similar types now public (entry point for memory management, etc) Native Providers: All providers now support freeing resources without unloading the provider Native Providers: MKL provider sets consistency, precision and accuracy modes earlier to ensure they are applied Native Providers: If a provider has been loaded successfully, skip any future loading attempts (faster switching) Build: add .Net Framework 4.6.1 target (main package), switch to 4.6.1 for testing projects

.NET Framework 4.0

  • No dependencies.

.NET Framework 4.6.1

  • No dependencies.

.NET Standard 1.3

.NET Standard 2.0

  • No dependencies.

Version Downloads Last updated
6.0.0-beta1 5 11/17/2024
5.0.0 2 11/19/2024
5.0.0-beta02 4 11/19/2024
5.0.0-beta01 4 11/19/2024
5.0.0-alpha16 5 11/19/2024
5.0.0-alpha15 2 11/19/2024
5.0.0-alpha14 3 11/19/2024
5.0.0-alpha13 3 11/19/2024
5.0.0-alpha12 2 11/19/2024
5.0.0-alpha11 2 11/19/2024
5.0.0-alpha10 2 11/19/2024
5.0.0-alpha09 2 11/19/2024
5.0.0-alpha08 2 11/19/2024
5.0.0-alpha07 5 11/19/2024
5.0.0-alpha06 2 11/19/2024
5.0.0-alpha05 2 11/19/2024
5.0.0-alpha04 4 11/19/2024
5.0.0-alpha03 2 11/19/2024
5.0.0-alpha02 2 11/19/2024
5.0.0-alpha01 3 11/19/2024
4.15.0 3 11/19/2024
4.14.0 2 11/19/2024
4.13.0 3 11/19/2024
4.12.0 4 11/19/2024
4.11.0 2 11/19/2024
4.10.0 4 11/19/2024
4.9.1 2 11/19/2024
4.9.0 2 11/19/2024
4.8.1 3 11/19/2024
4.8.0 3 11/19/2024
4.8.0-beta02 4 11/19/2024
4.8.0-beta01 3 11/19/2024
4.7.0 2 11/19/2024
4.6.0 3 11/19/2024
4.5.1 3 11/19/2024
4.5.0 2 11/19/2024
4.4.1 2 11/19/2024
4.4.0 3 11/19/2024
4.3.0 3 11/19/2024
4.2.0 2 11/19/2024
4.1.0 2 11/19/2024
4.0.0 3 11/19/2024
4.0.0-beta07 3 11/19/2024
4.0.0-beta06 3 11/19/2024
4.0.0-beta05 3 11/19/2024
4.0.0-beta04 5 11/19/2024
4.0.0-beta03 3 11/19/2024
4.0.0-beta02 3 11/19/2024
4.0.0-beta01 3 11/19/2024
4.0.0-alpha04 2 11/19/2024
4.0.0-alpha03 3 11/19/2024
4.0.0-alpha02 2 11/19/2024
4.0.0-alpha01 3 11/19/2024
3.20.2 3 11/19/2024
3.20.1 4 11/19/2024
3.20.0 2 11/19/2024
3.20.0-beta01 4 11/19/2024
3.19.0 3 11/19/2024
3.18.0 2 11/19/2024
3.17.0 4 11/19/2024
3.16.0 2 11/19/2024
3.15.0 2 11/19/2024
3.14.0-beta03 3 11/19/2024
3.14.0-beta02 4 11/19/2024
3.14.0-beta01 5 11/19/2024
3.13.1 3 11/19/2024
3.13.0 2 11/19/2024
3.12.0 3 11/19/2024
3.11.1 3 11/19/2024
3.11.0 2 11/19/2024
3.10.0 2 11/19/2024
3.9.0 2 11/19/2024
3.8.0 2 11/19/2024
3.7.1 3 11/19/2024
3.7.0 2 11/19/2024
3.6.0 3 11/19/2024
3.5.0 3 11/19/2024
3.4.0 2 11/19/2024
3.3.0 3 11/19/2024
3.3.0-beta2 4 11/19/2024
3.3.0-beta1 3 11/19/2024
3.2.3 2 11/19/2024
3.2.2 5 11/19/2024
3.2.1 2 11/19/2024
3.2.0 4 11/19/2024
3.1.0 3 11/19/2024
3.0.2 4 11/19/2024
3.0.1 2 11/19/2024
3.0.0 3 11/19/2024
3.0.0-beta05 4 11/19/2024
3.0.0-beta04 5 11/19/2024
3.0.0-beta03 4 11/19/2024
3.0.0-beta02 3 11/19/2024
3.0.0-beta01 4 11/19/2024
3.0.0-alpha9 2 11/19/2024
3.0.0-alpha8 2 11/19/2024
3.0.0-alpha7 2 11/18/2024
3.0.0-alpha6 4 11/19/2024
3.0.0-alpha5 2 11/19/2024
3.0.0-alpha4 2 11/19/2024
3.0.0-alpha1 3 11/19/2024
2.6.2 2 11/19/2024
2.6.1 2 11/19/2024
2.6.0 3 11/19/2024
2.5.0 3 11/19/2024
2.4.0 2 11/19/2024
2.3.0 2 11/19/2024
2.2.1 2 11/19/2024
2.2.0 3 11/19/2024
2.1.2 3 11/19/2024
2.1.1 3 11/19/2024