MathNet.Numerics 3.0.0-beta04

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0, .Net 3.5 and Mono on Windows, Linux and Mac; Silverlight 5, WindowsPhone/SL 8, WindowsPhone 8.1 and Windows 8 with PCL Portable Profiles 47 and 344; Android/iOS with Xamarin.

Showing the top 20 packages that depend on MathNet.Numerics.

Packages Downloads
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
3

Candidate for v3.0 Release Linear Algebra: FoldRows renamed to FoldByRow, now operates on and returns arrays; same for columns New FoldRows and ReduceRows that operate on row vectors; same for columns Split Map into Map and MapConvert (allows optimization in common in-place case) Row and columns sums and absolute-sums F# DiagonalMatrix module to create diagonal matrices without using the builder F# Matrix module extended with sumRows, sumAbsRows, normRows; same for columns Build: extend build and release automation, automatic releases also for data extensions and native providers

This package has no dependencies.

Version Downloads Last updated
6.0.0-beta1 4 11/17/2024
5.0.0 2 11/19/2024
5.0.0-beta02 3 11/19/2024
5.0.0-beta01 4 11/19/2024
5.0.0-alpha16 4 11/19/2024
5.0.0-alpha15 2 11/19/2024
5.0.0-alpha14 3 11/19/2024
5.0.0-alpha13 2 11/19/2024
5.0.0-alpha12 2 11/19/2024
5.0.0-alpha11 2 11/19/2024
5.0.0-alpha10 2 11/19/2024
5.0.0-alpha09 2 11/19/2024
5.0.0-alpha08 2 11/19/2024
5.0.0-alpha07 4 11/19/2024
5.0.0-alpha06 2 11/19/2024
5.0.0-alpha05 2 11/19/2024
5.0.0-alpha04 3 11/19/2024
5.0.0-alpha03 2 11/19/2024
5.0.0-alpha02 2 11/19/2024
5.0.0-alpha01 2 11/19/2024
4.15.0 3 11/19/2024
4.14.0 2 11/19/2024
4.13.0 2 11/19/2024
4.12.0 3 11/19/2024
4.11.0 2 11/19/2024
4.10.0 4 11/19/2024
4.9.1 2 11/19/2024
4.9.0 2 11/19/2024
4.8.1 2 11/19/2024
4.8.0 2 11/19/2024
4.8.0-beta02 3 11/19/2024
4.8.0-beta01 3 11/19/2024
4.7.0 2 11/19/2024
4.6.0 2 11/19/2024
4.5.1 2 11/19/2024
4.5.0 2 11/19/2024
4.4.1 2 11/19/2024
4.4.0 2 11/19/2024
4.3.0 2 11/19/2024
4.2.0 2 11/19/2024
4.1.0 2 11/19/2024
4.0.0 2 11/19/2024
4.0.0-beta07 3 11/19/2024
4.0.0-beta06 3 11/19/2024
4.0.0-beta05 3 11/19/2024
4.0.0-beta04 4 11/19/2024
4.0.0-beta03 3 11/19/2024
4.0.0-beta02 3 11/19/2024
4.0.0-beta01 3 11/19/2024
4.0.0-alpha04 2 11/19/2024
4.0.0-alpha03 2 11/19/2024
4.0.0-alpha02 2 11/19/2024
4.0.0-alpha01 2 11/19/2024
3.20.2 2 11/19/2024
3.20.1 3 11/19/2024
3.20.0 2 11/19/2024
3.20.0-beta01 3 11/19/2024
3.19.0 2 11/19/2024
3.18.0 2 11/19/2024
3.17.0 3 11/19/2024
3.16.0 2 11/19/2024
3.15.0 2 11/19/2024
3.14.0-beta03 3 11/19/2024
3.14.0-beta02 3 11/19/2024
3.14.0-beta01 4 11/19/2024
3.13.1 2 11/19/2024
3.13.0 2 11/19/2024
3.12.0 2 11/19/2024
3.11.1 3 11/19/2024
3.11.0 2 11/19/2024
3.10.0 2 11/19/2024
3.9.0 2 11/19/2024
3.8.0 2 11/19/2024
3.7.1 2 11/19/2024
3.7.0 2 11/19/2024
3.6.0 2 11/19/2024
3.5.0 2 11/19/2024
3.4.0 2 11/19/2024
3.3.0 2 11/19/2024
3.3.0-beta2 3 11/19/2024
3.3.0-beta1 3 11/19/2024
3.2.3 2 11/19/2024
3.2.2 4 11/19/2024
3.2.1 2 11/19/2024
3.2.0 4 11/19/2024
3.1.0 2 11/19/2024
3.0.2 4 11/19/2024
3.0.1 2 11/19/2024
3.0.0 2 11/19/2024
3.0.0-beta05 3 11/19/2024
3.0.0-beta04 4 11/19/2024
3.0.0-beta03 3 11/19/2024
3.0.0-beta02 3 11/19/2024
3.0.0-beta01 3 11/19/2024
3.0.0-alpha9 2 11/19/2024
3.0.0-alpha8 2 11/19/2024
3.0.0-alpha7 2 11/18/2024
3.0.0-alpha6 4 11/19/2024
3.0.0-alpha5 2 11/19/2024
3.0.0-alpha4 2 11/19/2024
3.0.0-alpha1 2 11/19/2024
2.6.2 2 11/19/2024
2.6.1 2 11/19/2024
2.6.0 2 11/19/2024
2.5.0 2 11/19/2024
2.4.0 2 11/19/2024
2.3.0 2 11/19/2024
2.2.1 2 11/19/2024
2.2.0 2 11/19/2024
2.1.2 2 11/19/2024
2.1.1 2 11/19/2024