MathNet.Numerics 3.14.0-beta02

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0, .Net 3.5 and Mono on Windows, Linux and Mac; Silverlight 5, WindowsPhone/SL 8, WindowsPhone 8.1 and Windows 8 with PCL portable profiles 7, 47, 78, 259 and 328; Android/iOS with Xamarin.

Showing the top 20 packages that depend on MathNet.Numerics.

Packages Downloads
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
3

Linear Algebra: enable experimental matrix product implementation Linear Algebra: better support for matrix to/from row-major arrays and enumerables Linear Algebra: transport allows specifying a result matrix to transpose into, inplace if square Linear Algebra: vector and matrix AsArray and similar to access internal arrays if applicable Linear Algebra: vector and matrix pointwise min/max and absmin/absmax

.NET Framework 3.5

.NET Framework 4.0

  • No dependencies.

Version Downloads Last updated
6.0.0-beta1 5 11/17/2024
5.0.0 2 11/19/2024
5.0.0-beta02 3 11/19/2024
5.0.0-beta01 4 11/19/2024
5.0.0-alpha16 4 11/19/2024
5.0.0-alpha15 2 11/19/2024
5.0.0-alpha14 3 11/19/2024
5.0.0-alpha13 2 11/19/2024
5.0.0-alpha12 2 11/19/2024
5.0.0-alpha11 2 11/19/2024
5.0.0-alpha10 2 11/19/2024
5.0.0-alpha09 2 11/19/2024
5.0.0-alpha08 2 11/19/2024
5.0.0-alpha07 4 11/19/2024
5.0.0-alpha06 2 11/19/2024
5.0.0-alpha05 2 11/19/2024
5.0.0-alpha04 3 11/19/2024
5.0.0-alpha03 2 11/19/2024
5.0.0-alpha02 2 11/19/2024
5.0.0-alpha01 2 11/19/2024
4.15.0 3 11/19/2024
4.14.0 2 11/19/2024
4.13.0 2 11/19/2024
4.12.0 3 11/19/2024
4.11.0 2 11/19/2024
4.10.0 4 11/19/2024
4.9.1 2 11/19/2024
4.9.0 2 11/19/2024
4.8.1 2 11/19/2024
4.8.0 2 11/19/2024
4.8.0-beta02 3 11/19/2024
4.8.0-beta01 3 11/19/2024
4.7.0 2 11/19/2024
4.6.0 2 11/19/2024
4.5.1 2 11/19/2024
4.5.0 2 11/19/2024
4.4.1 2 11/19/2024
4.4.0 2 11/19/2024
4.3.0 2 11/19/2024
4.2.0 2 11/19/2024
4.1.0 2 11/19/2024
4.0.0 2 11/19/2024
4.0.0-beta07 3 11/19/2024
4.0.0-beta06 3 11/19/2024
4.0.0-beta05 3 11/19/2024
4.0.0-beta04 4 11/19/2024
4.0.0-beta03 3 11/19/2024
4.0.0-beta02 3 11/19/2024
4.0.0-beta01 3 11/19/2024
4.0.0-alpha04 2 11/19/2024
4.0.0-alpha03 2 11/19/2024
4.0.0-alpha02 2 11/19/2024
4.0.0-alpha01 2 11/19/2024
3.20.2 2 11/19/2024
3.20.1 3 11/19/2024
3.20.0 2 11/19/2024
3.20.0-beta01 3 11/19/2024
3.19.0 2 11/19/2024
3.18.0 2 11/19/2024
3.17.0 3 11/19/2024
3.16.0 2 11/19/2024
3.15.0 2 11/19/2024
3.14.0-beta03 3 11/19/2024
3.14.0-beta02 3 11/19/2024
3.14.0-beta01 4 11/19/2024
3.13.1 2 11/19/2024
3.13.0 2 11/19/2024
3.12.0 2 11/19/2024
3.11.1 3 11/19/2024
3.11.0 2 11/19/2024
3.10.0 2 11/19/2024
3.9.0 2 11/19/2024
3.8.0 2 11/19/2024
3.7.1 2 11/19/2024
3.7.0 2 11/19/2024
3.6.0 2 11/19/2024
3.5.0 2 11/19/2024
3.4.0 2 11/19/2024
3.3.0 2 11/19/2024
3.3.0-beta2 3 11/19/2024
3.3.0-beta1 3 11/19/2024
3.2.3 2 11/19/2024
3.2.2 4 11/19/2024
3.2.1 2 11/19/2024
3.2.0 4 11/19/2024
3.1.0 2 11/19/2024
3.0.2 4 11/19/2024
3.0.1 2 11/19/2024
3.0.0 2 11/19/2024
3.0.0-beta05 3 11/19/2024
3.0.0-beta04 4 11/19/2024
3.0.0-beta03 3 11/19/2024
3.0.0-beta02 3 11/19/2024
3.0.0-beta01 3 11/19/2024
3.0.0-alpha9 2 11/19/2024
3.0.0-alpha8 2 11/19/2024
3.0.0-alpha7 2 11/18/2024
3.0.0-alpha6 4 11/19/2024
3.0.0-alpha5 2 11/19/2024
3.0.0-alpha4 2 11/19/2024
3.0.0-alpha1 2 11/19/2024
2.6.2 2 11/19/2024
2.6.1 2 11/19/2024
2.6.0 2 11/19/2024
2.5.0 2 11/19/2024
2.4.0 2 11/19/2024
2.3.0 2 11/19/2024
2.2.1 2 11/19/2024
2.2.0 2 11/19/2024
2.1.2 2 11/19/2024
2.1.1 2 11/19/2024