MathNet.Numerics 4.1.0

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net Framework 4.0 or higher and .Net Standard 1.3 or higher, on Windows, Linux and Mac.

Showing the top 20 packages that depend on MathNet.Numerics.

Packages Downloads
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
10
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
6
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
4
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
3
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
2

Curve Fitting: Fit.Power, Fit.Exponential, Fit.Logarithm (similar to excel trend curves)

.NET Framework 4.0

  • No dependencies.

.NET Standard 1.3

.NET Standard 2.0

  • No dependencies.

Version Downloads Last updated
6.0.0-beta1 8 11/17/2024
5.0.0 7 11/19/2024
5.0.0-beta02 7 11/19/2024
5.0.0-beta01 10 11/19/2024
5.0.0-alpha16 9 11/19/2024
5.0.0-alpha15 7 11/19/2024
5.0.0-alpha14 8 11/19/2024
5.0.0-alpha13 7 11/19/2024
5.0.0-alpha12 5 11/19/2024
5.0.0-alpha11 7 11/19/2024
5.0.0-alpha10 5 11/19/2024
5.0.0-alpha09 6 11/19/2024
5.0.0-alpha08 6 11/19/2024
5.0.0-alpha07 9 11/19/2024
5.0.0-alpha06 6 11/19/2024
5.0.0-alpha05 6 11/19/2024
5.0.0-alpha04 8 11/19/2024
5.0.0-alpha03 7 11/19/2024
5.0.0-alpha02 6 11/19/2024
5.0.0-alpha01 7 11/19/2024
4.15.0 6 11/19/2024
4.14.0 6 11/19/2024
4.13.0 7 11/19/2024
4.12.0 7 11/19/2024
4.11.0 7 11/19/2024
4.10.0 8 11/19/2024
4.9.1 5 11/19/2024
4.9.0 7 11/19/2024
4.8.1 7 11/19/2024
4.8.0 6 11/19/2024
4.8.0-beta02 8 11/19/2024
4.8.0-beta01 8 11/19/2024
4.7.0 7 11/19/2024
4.6.0 6 11/19/2024
4.5.1 6 11/19/2024
4.5.0 6 11/19/2024
4.4.1 6 11/19/2024
4.4.0 6 11/19/2024
4.3.0 5 11/19/2024
4.2.0 8 11/19/2024
4.1.0 6 11/19/2024
4.0.0 6 11/19/2024
4.0.0-beta07 7 11/19/2024
4.0.0-beta06 11 11/19/2024
4.0.0-beta05 9 11/19/2024
4.0.0-beta04 10 11/19/2024
4.0.0-beta03 8 11/19/2024
4.0.0-beta02 9 11/19/2024
4.0.0-beta01 8 11/19/2024
4.0.0-alpha04 7 11/19/2024
4.0.0-alpha03 7 11/19/2024
4.0.0-alpha02 7 11/19/2024
4.0.0-alpha01 6 11/19/2024
3.20.2 5 11/19/2024
3.20.1 7 11/19/2024
3.20.0 6 11/19/2024
3.20.0-beta01 7 11/19/2024
3.19.0 6 11/19/2024
3.18.0 5 11/19/2024
3.17.0 8 11/19/2024
3.16.0 5 11/19/2024
3.15.0 5 11/19/2024
3.14.0-beta03 7 11/19/2024
3.14.0-beta02 8 11/19/2024
3.14.0-beta01 8 11/19/2024
3.13.1 6 11/19/2024
3.13.0 5 11/19/2024
3.12.0 6 11/19/2024
3.11.1 7 11/19/2024
3.11.0 8 11/19/2024
3.10.0 7 11/19/2024
3.9.0 5 11/19/2024
3.8.0 5 11/19/2024
3.7.1 6 11/19/2024
3.7.0 6 11/19/2024
3.6.0 7 11/19/2024
3.5.0 7 11/19/2024
3.4.0 5 11/19/2024
3.3.0 6 11/19/2024
3.3.0-beta2 8 11/19/2024
3.3.0-beta1 7 11/19/2024
3.2.3 6 11/19/2024
3.2.2 8 11/19/2024
3.2.1 6 11/19/2024
3.2.0 8 11/19/2024
3.1.0 7 11/19/2024
3.0.2 8 11/19/2024
3.0.1 6 11/19/2024
3.0.0 7 11/19/2024
3.0.0-beta05 9 11/19/2024
3.0.0-beta04 10 11/19/2024
3.0.0-beta03 9 11/19/2024
3.0.0-beta02 8 11/19/2024
3.0.0-beta01 8 11/19/2024
3.0.0-alpha9 6 11/19/2024
3.0.0-alpha8 7 11/19/2024
3.0.0-alpha7 6 11/18/2024
3.0.0-alpha6 8 11/19/2024
3.0.0-alpha5 7 11/19/2024
3.0.0-alpha4 5 11/19/2024
3.0.0-alpha1 7 11/19/2024
2.6.2 6 11/19/2024
2.6.1 7 11/19/2024
2.6.0 7 11/19/2024
2.5.0 7 11/19/2024
2.4.0 7 11/19/2024
2.3.0 6 11/19/2024
2.2.1 6 11/19/2024
2.2.0 6 11/19/2024
2.1.2 6 11/19/2024
2.1.1 7 11/19/2024