MathNet.Numerics 3.0.0-alpha1

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Numerics is the result of merging dnAnalytics with Math.NET Iridium and is intended to replace both. Also includes a portable build supporting .Net 4 and higher, SL5, WP8 and .NET for Windows Store apps.

Showing the top 20 packages that depend on MathNet.Numerics.

Packages Downloads
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
13
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
12
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
7
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
6
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
5
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
4
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
3
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
2

This package has no dependencies.

Version Downloads Last updated
6.0.0-beta2 5 03/06/2025
6.0.0-beta1 12 11/17/2024
5.0.0 10 11/19/2024
5.0.0-beta02 13 11/19/2024
5.0.0-beta01 15 11/19/2024
5.0.0-alpha16 14 11/19/2024
5.0.0-alpha15 12 11/19/2024
5.0.0-alpha14 11 11/19/2024
5.0.0-alpha13 10 11/19/2024
5.0.0-alpha12 7 11/19/2024
5.0.0-alpha11 10 11/19/2024
5.0.0-alpha10 7 11/19/2024
5.0.0-alpha09 11 11/19/2024
5.0.0-alpha08 10 11/19/2024
5.0.0-alpha07 10 11/19/2024
5.0.0-alpha06 8 11/19/2024
5.0.0-alpha05 8 11/19/2024
5.0.0-alpha04 11 11/19/2024
5.0.0-alpha03 10 11/19/2024
5.0.0-alpha02 10 11/19/2024
5.0.0-alpha01 11 11/19/2024
4.15.0 13 11/19/2024
4.14.0 11 11/19/2024
4.13.0 11 11/19/2024
4.12.0 13 11/19/2024
4.11.0 10 11/19/2024
4.10.0 14 11/19/2024
4.9.1 7 11/19/2024
4.9.0 9 11/19/2024
4.8.1 10 11/19/2024
4.8.0 8 11/19/2024
4.8.0-beta02 12 11/19/2024
4.8.0-beta01 13 11/19/2024
4.7.0 10 11/19/2024
4.6.0 9 11/19/2024
4.5.1 8 11/19/2024
4.5.0 7 11/19/2024
4.4.1 8 11/19/2024
4.4.0 10 11/19/2024
4.3.0 8 11/19/2024
4.2.0 11 11/19/2024
4.1.0 9 11/19/2024
4.0.0 10 11/19/2024
4.0.0-beta07 11 11/19/2024
4.0.0-beta06 15 11/19/2024
4.0.0-beta05 13 11/19/2024
4.0.0-beta04 14 11/19/2024
4.0.0-beta03 13 11/19/2024
4.0.0-beta02 15 11/19/2024
4.0.0-beta01 14 11/19/2024
4.0.0-alpha04 9 11/19/2024
4.0.0-alpha03 10 11/19/2024
4.0.0-alpha02 10 11/19/2024
4.0.0-alpha01 9 11/19/2024
3.20.2 7 11/19/2024
3.20.1 10 11/19/2024
3.20.0 8 11/19/2024
3.20.0-beta01 10 11/19/2024
3.19.0 8 11/19/2024
3.18.0 8 11/19/2024
3.17.0 11 11/19/2024
3.16.0 12 11/19/2024
3.15.0 12 11/19/2024
3.14.0-beta03 12 11/19/2024
3.14.0-beta02 14 11/19/2024
3.14.0-beta01 12 11/19/2024
3.13.1 10 11/19/2024
3.13.0 10 11/19/2024
3.12.0 10 11/19/2024
3.11.1 10 11/19/2024
3.11.0 10 11/19/2024
3.10.0 11 11/19/2024
3.9.0 9 11/19/2024
3.8.0 6 11/19/2024
3.7.1 9 11/19/2024
3.7.0 10 11/19/2024
3.6.0 10 11/19/2024
3.5.0 10 11/19/2024
3.4.0 8 11/19/2024
3.3.0 9 11/19/2024
3.3.0-beta2 13 11/19/2024
3.3.0-beta1 13 11/19/2024
3.2.3 7 11/19/2024
3.2.2 10 11/19/2024
3.2.1 10 11/19/2024
3.2.0 14 11/19/2024
3.1.0 10 11/19/2024
3.0.2 12 11/19/2024
3.0.1 9 11/19/2024
3.0.0 10 11/19/2024
3.0.0-beta05 14 11/19/2024
3.0.0-beta04 15 11/19/2024
3.0.0-beta03 14 11/19/2024
3.0.0-beta02 13 11/19/2024
3.0.0-beta01 14 11/19/2024
3.0.0-alpha9 10 11/19/2024
3.0.0-alpha8 11 11/19/2024
3.0.0-alpha7 11 11/18/2024
3.0.0-alpha6 13 11/19/2024
3.0.0-alpha5 10 11/19/2024
3.0.0-alpha4 10 11/19/2024
3.0.0-alpha1 10 11/19/2024
2.6.2 9 11/19/2024
2.6.1 10 11/19/2024
2.6.0 9 11/19/2024
2.5.0 9 11/19/2024
2.4.0 10 11/19/2024
2.3.0 9 11/19/2024
2.2.1 8 11/19/2024
2.2.0 9 11/19/2024
2.1.2 10 11/19/2024
2.1.1 11 11/19/2024