MathNet.Numerics 4.3.0

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net Framework 4.0 or higher and .Net Standard 1.3 or higher, on Windows, Linux and Mac.

Showing the top 20 packages that depend on MathNet.Numerics.

Packages Downloads
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
3

FFT: migrate managed algorithms to provider, streamline implementation wiring, scaling logic. FFT: obsoleted algorithm-specific functions like Radix2Forward, they use Forward internally until v5. FFT: migrate "naive" implementation to tests as reference implementation. Build: fix NuGet packaging sucht that the included assemblies are really code-signed.

.NET Framework 4.0

  • No dependencies.

.NET Framework 4.6.1

  • No dependencies.

.NET Standard 1.3

.NET Standard 2.0

  • No dependencies.

Version Downloads Last updated
6.0.0-beta1 5 11/17/2024
5.0.0 2 11/19/2024
5.0.0-beta02 3 11/19/2024
5.0.0-beta01 4 11/19/2024
5.0.0-alpha16 4 11/19/2024
5.0.0-alpha15 2 11/19/2024
5.0.0-alpha14 3 11/19/2024
5.0.0-alpha13 2 11/19/2024
5.0.0-alpha12 2 11/19/2024
5.0.0-alpha11 2 11/19/2024
5.0.0-alpha10 2 11/19/2024
5.0.0-alpha09 2 11/19/2024
5.0.0-alpha08 2 11/19/2024
5.0.0-alpha07 4 11/19/2024
5.0.0-alpha06 2 11/19/2024
5.0.0-alpha05 2 11/19/2024
5.0.0-alpha04 3 11/19/2024
5.0.0-alpha03 2 11/19/2024
5.0.0-alpha02 2 11/19/2024
5.0.0-alpha01 2 11/19/2024
4.15.0 3 11/19/2024
4.14.0 2 11/19/2024
4.13.0 2 11/19/2024
4.12.0 3 11/19/2024
4.11.0 2 11/19/2024
4.10.0 4 11/19/2024
4.9.1 2 11/19/2024
4.9.0 2 11/19/2024
4.8.1 2 11/19/2024
4.8.0 2 11/19/2024
4.8.0-beta02 3 11/19/2024
4.8.0-beta01 3 11/19/2024
4.7.0 2 11/19/2024
4.6.0 2 11/19/2024
4.5.1 2 11/19/2024
4.5.0 2 11/19/2024
4.4.1 2 11/19/2024
4.4.0 2 11/19/2024
4.3.0 2 11/19/2024
4.2.0 2 11/19/2024
4.1.0 2 11/19/2024
4.0.0 2 11/19/2024
4.0.0-beta07 3 11/19/2024
4.0.0-beta06 3 11/19/2024
4.0.0-beta05 3 11/19/2024
4.0.0-beta04 4 11/19/2024
4.0.0-beta03 3 11/19/2024
4.0.0-beta02 3 11/19/2024
4.0.0-beta01 3 11/19/2024
4.0.0-alpha04 2 11/19/2024
4.0.0-alpha03 2 11/19/2024
4.0.0-alpha02 2 11/19/2024
4.0.0-alpha01 2 11/19/2024
3.20.2 2 11/19/2024
3.20.1 3 11/19/2024
3.20.0 2 11/19/2024
3.20.0-beta01 3 11/19/2024
3.19.0 2 11/19/2024
3.18.0 2 11/19/2024
3.17.0 3 11/19/2024
3.16.0 2 11/19/2024
3.15.0 2 11/19/2024
3.14.0-beta03 3 11/19/2024
3.14.0-beta02 3 11/19/2024
3.14.0-beta01 4 11/19/2024
3.13.1 2 11/19/2024
3.13.0 2 11/19/2024
3.12.0 2 11/19/2024
3.11.1 3 11/19/2024
3.11.0 2 11/19/2024
3.10.0 2 11/19/2024
3.9.0 2 11/19/2024
3.8.0 2 11/19/2024
3.7.1 2 11/19/2024
3.7.0 2 11/19/2024
3.6.0 2 11/19/2024
3.5.0 2 11/19/2024
3.4.0 2 11/19/2024
3.3.0 2 11/19/2024
3.3.0-beta2 3 11/19/2024
3.3.0-beta1 3 11/19/2024
3.2.3 2 11/19/2024
3.2.2 4 11/19/2024
3.2.1 2 11/19/2024
3.2.0 4 11/19/2024
3.1.0 2 11/19/2024
3.0.2 4 11/19/2024
3.0.1 2 11/19/2024
3.0.0 2 11/19/2024
3.0.0-beta05 3 11/19/2024
3.0.0-beta04 4 11/19/2024
3.0.0-beta03 3 11/19/2024
3.0.0-beta02 3 11/19/2024
3.0.0-beta01 3 11/19/2024
3.0.0-alpha9 2 11/19/2024
3.0.0-alpha8 2 11/19/2024
3.0.0-alpha7 2 11/18/2024
3.0.0-alpha6 4 11/19/2024
3.0.0-alpha5 2 11/19/2024
3.0.0-alpha4 2 11/19/2024
3.0.0-alpha1 2 11/19/2024
2.6.2 2 11/19/2024
2.6.1 2 11/19/2024
2.6.0 2 11/19/2024
2.5.0 2 11/19/2024
2.4.0 2 11/19/2024
2.3.0 2 11/19/2024
2.2.1 2 11/19/2024
2.2.0 2 11/19/2024
2.1.2 2 11/19/2024
2.1.1 2 11/19/2024