MathNet.Numerics 3.1.0

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0, .Net 3.5 and Mono on Windows, Linux and Mac; Silverlight 5, WindowsPhone/SL 8, WindowsPhone 8.1 and Windows 8 with PCL Portable Profiles 47 and 344; Android/iOS with Xamarin.

Showing the top 20 packages that depend on MathNet.Numerics.

Packages Downloads
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
3

Random: generate a sequence of integers within a range in one go Distributions: all distributions must have static routines to sample an array in one go Linear Algebra: fix Matrix.StrictlyLowerTriangle Linear Algebra: fix vector DoOuterProduct ~mjmckp Linear Algebra: enumerators accept Zeros-parameter (like map/fold already does) Linear Algebra: Vector.MapConvert (consistency) Linear Algebra: proper term for "conjugate symmetric" is "Hermitian"" Interpolation: new Step, LogLinear and transformed interpolators ~Candy Chiu Interpolation: check for min required number of data points, throw ArgumentException if not. Root Finding: F# FindRoots.broyden module function ~teramonagi Misc docs fixes

This package has no dependencies.

Version Downloads Last updated
6.0.0-beta1 5 11/17/2024
5.0.0 2 11/19/2024
5.0.0-beta02 3 11/19/2024
5.0.0-beta01 4 11/19/2024
5.0.0-alpha16 4 11/19/2024
5.0.0-alpha15 2 11/19/2024
5.0.0-alpha14 3 11/19/2024
5.0.0-alpha13 2 11/19/2024
5.0.0-alpha12 2 11/19/2024
5.0.0-alpha11 2 11/19/2024
5.0.0-alpha10 2 11/19/2024
5.0.0-alpha09 2 11/19/2024
5.0.0-alpha08 2 11/19/2024
5.0.0-alpha07 4 11/19/2024
5.0.0-alpha06 2 11/19/2024
5.0.0-alpha05 2 11/19/2024
5.0.0-alpha04 3 11/19/2024
5.0.0-alpha03 2 11/19/2024
5.0.0-alpha02 2 11/19/2024
5.0.0-alpha01 2 11/19/2024
4.15.0 3 11/19/2024
4.14.0 2 11/19/2024
4.13.0 2 11/19/2024
4.12.0 3 11/19/2024
4.11.0 2 11/19/2024
4.10.0 4 11/19/2024
4.9.1 2 11/19/2024
4.9.0 2 11/19/2024
4.8.1 2 11/19/2024
4.8.0 2 11/19/2024
4.8.0-beta02 3 11/19/2024
4.8.0-beta01 3 11/19/2024
4.7.0 2 11/19/2024
4.6.0 2 11/19/2024
4.5.1 2 11/19/2024
4.5.0 2 11/19/2024
4.4.1 2 11/19/2024
4.4.0 2 11/19/2024
4.3.0 2 11/19/2024
4.2.0 2 11/19/2024
4.1.0 2 11/19/2024
4.0.0 2 11/19/2024
4.0.0-beta07 3 11/19/2024
4.0.0-beta06 3 11/19/2024
4.0.0-beta05 3 11/19/2024
4.0.0-beta04 4 11/19/2024
4.0.0-beta03 3 11/19/2024
4.0.0-beta02 3 11/19/2024
4.0.0-beta01 3 11/19/2024
4.0.0-alpha04 2 11/19/2024
4.0.0-alpha03 2 11/19/2024
4.0.0-alpha02 2 11/19/2024
4.0.0-alpha01 2 11/19/2024
3.20.2 2 11/19/2024
3.20.1 3 11/19/2024
3.20.0 2 11/19/2024
3.20.0-beta01 3 11/19/2024
3.19.0 2 11/19/2024
3.18.0 2 11/19/2024
3.17.0 3 11/19/2024
3.16.0 2 11/19/2024
3.15.0 2 11/19/2024
3.14.0-beta03 3 11/19/2024
3.14.0-beta02 3 11/19/2024
3.14.0-beta01 4 11/19/2024
3.13.1 2 11/19/2024
3.13.0 2 11/19/2024
3.12.0 2 11/19/2024
3.11.1 3 11/19/2024
3.11.0 2 11/19/2024
3.10.0 2 11/19/2024
3.9.0 2 11/19/2024
3.8.0 2 11/19/2024
3.7.1 2 11/19/2024
3.7.0 2 11/19/2024
3.6.0 2 11/19/2024
3.5.0 2 11/19/2024
3.4.0 2 11/19/2024
3.3.0 2 11/19/2024
3.3.0-beta2 3 11/19/2024
3.3.0-beta1 3 11/19/2024
3.2.3 2 11/19/2024
3.2.2 4 11/19/2024
3.2.1 2 11/19/2024
3.2.0 4 11/19/2024
3.1.0 2 11/19/2024
3.0.2 4 11/19/2024
3.0.1 2 11/19/2024
3.0.0 2 11/19/2024
3.0.0-beta05 3 11/19/2024
3.0.0-beta04 4 11/19/2024
3.0.0-beta03 3 11/19/2024
3.0.0-beta02 3 11/19/2024
3.0.0-beta01 3 11/19/2024
3.0.0-alpha9 2 11/19/2024
3.0.0-alpha8 2 11/19/2024
3.0.0-alpha7 2 11/18/2024
3.0.0-alpha6 4 11/19/2024
3.0.0-alpha5 2 11/19/2024
3.0.0-alpha4 2 11/19/2024
3.0.0-alpha1 2 11/19/2024
2.6.2 2 11/19/2024
2.6.1 2 11/19/2024
2.6.0 2 11/19/2024
2.5.0 2 11/19/2024
2.4.0 2 11/19/2024
2.3.0 2 11/19/2024
2.2.1 2 11/19/2024
2.2.0 2 11/19/2024
2.1.2 2 11/19/2024
2.1.1 2 11/19/2024