MathNet.Numerics 3.17.0

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0, .Net 3.5 and Mono on Windows, Linux and Mac; Silverlight 5, WindowsPhone/SL 8, WindowsPhone 8.1 and Windows 8 with PCL portable profiles 7, 47, 78, 259 and 328; Android/iOS with Xamarin.

Showing the top 20 packages that depend on MathNet.Numerics.

Packages Downloads
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
5

Random: random sources (all except crypto) now support ephemeral serialization. Linear Algebra: explicit impl to copy a range of a row of a sparse matrix to a range of a sparse vector ~arthurvb Linear Algebra: explicitly demand fully modifiable matrix where needed, fixes issues with diagonal matrices. FFT: leverage new matrix internal array access approach in 2D matrix transformations.

.NET Framework 3.5

.NET Framework 4.0

  • No dependencies.

Version Downloads Last updated
6.0.0-beta1 5 11/17/2024
5.0.0 2 11/19/2024
5.0.0-beta02 4 11/19/2024
5.0.0-beta01 4 11/19/2024
5.0.0-alpha16 5 11/19/2024
5.0.0-alpha15 2 11/19/2024
5.0.0-alpha14 3 11/19/2024
5.0.0-alpha13 3 11/19/2024
5.0.0-alpha12 2 11/19/2024
5.0.0-alpha11 2 11/19/2024
5.0.0-alpha10 2 11/19/2024
5.0.0-alpha09 2 11/19/2024
5.0.0-alpha08 2 11/19/2024
5.0.0-alpha07 5 11/19/2024
5.0.0-alpha06 2 11/19/2024
5.0.0-alpha05 2 11/19/2024
5.0.0-alpha04 4 11/19/2024
5.0.0-alpha03 2 11/19/2024
5.0.0-alpha02 2 11/19/2024
5.0.0-alpha01 3 11/19/2024
4.15.0 3 11/19/2024
4.14.0 2 11/19/2024
4.13.0 3 11/19/2024
4.12.0 4 11/19/2024
4.11.0 2 11/19/2024
4.10.0 4 11/19/2024
4.9.1 2 11/19/2024
4.9.0 2 11/19/2024
4.8.1 3 11/19/2024
4.8.0 3 11/19/2024
4.8.0-beta02 4 11/19/2024
4.8.0-beta01 3 11/19/2024
4.7.0 2 11/19/2024
4.6.0 3 11/19/2024
4.5.1 3 11/19/2024
4.5.0 2 11/19/2024
4.4.1 2 11/19/2024
4.4.0 3 11/19/2024
4.3.0 3 11/19/2024
4.2.0 2 11/19/2024
4.1.0 2 11/19/2024
4.0.0 3 11/19/2024
4.0.0-beta07 3 11/19/2024
4.0.0-beta06 3 11/19/2024
4.0.0-beta05 3 11/19/2024
4.0.0-beta04 5 11/19/2024
4.0.0-beta03 3 11/19/2024
4.0.0-beta02 3 11/19/2024
4.0.0-beta01 3 11/19/2024
4.0.0-alpha04 2 11/19/2024
4.0.0-alpha03 3 11/19/2024
4.0.0-alpha02 2 11/19/2024
4.0.0-alpha01 3 11/19/2024
3.20.2 3 11/19/2024
3.20.1 4 11/19/2024
3.20.0 2 11/19/2024
3.20.0-beta01 4 11/19/2024
3.19.0 3 11/19/2024
3.18.0 2 11/19/2024
3.17.0 4 11/19/2024
3.16.0 2 11/19/2024
3.15.0 2 11/19/2024
3.14.0-beta03 3 11/19/2024
3.14.0-beta02 4 11/19/2024
3.14.0-beta01 5 11/19/2024
3.13.1 3 11/19/2024
3.13.0 2 11/19/2024
3.12.0 3 11/19/2024
3.11.1 3 11/19/2024
3.11.0 2 11/19/2024
3.10.0 2 11/19/2024
3.9.0 2 11/19/2024
3.8.0 2 11/19/2024
3.7.1 3 11/19/2024
3.7.0 2 11/19/2024
3.6.0 3 11/19/2024
3.5.0 3 11/19/2024
3.4.0 2 11/19/2024
3.3.0 3 11/19/2024
3.3.0-beta2 4 11/19/2024
3.3.0-beta1 3 11/19/2024
3.2.3 2 11/19/2024
3.2.2 5 11/19/2024
3.2.1 2 11/19/2024
3.2.0 4 11/19/2024
3.1.0 3 11/19/2024
3.0.2 4 11/19/2024
3.0.1 2 11/19/2024
3.0.0 3 11/19/2024
3.0.0-beta05 4 11/19/2024
3.0.0-beta04 5 11/19/2024
3.0.0-beta03 4 11/19/2024
3.0.0-beta02 3 11/19/2024
3.0.0-beta01 4 11/19/2024
3.0.0-alpha9 2 11/19/2024
3.0.0-alpha8 2 11/19/2024
3.0.0-alpha7 2 11/18/2024
3.0.0-alpha6 4 11/19/2024
3.0.0-alpha5 2 11/19/2024
3.0.0-alpha4 2 11/19/2024
3.0.0-alpha1 3 11/19/2024
2.6.2 2 11/19/2024
2.6.1 2 11/19/2024
2.6.0 3 11/19/2024
2.5.0 3 11/19/2024
2.4.0 2 11/19/2024
2.3.0 2 11/19/2024
2.2.1 2 11/19/2024
2.2.0 3 11/19/2024
2.1.2 3 11/19/2024
2.1.1 3 11/19/2024