MathNet.Numerics 4.0.0-beta02

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net Framework 4.0 or higher and .Net Standard 1.3 or higher, on Windows, Linux and Mac.

Showing the top 20 packages that depend on MathNet.Numerics.

Packages Downloads
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
5

Root Finding: Broyden: step size for calculating appox Jacobian, more robust step size formula ~Aappo Pulkkinen Statistics: Kernel Density Estimation ~Christoph Albert

.NET Framework 4.0

  • No dependencies.

.NET Standard 1.3

.NET Standard 2.0

  • No dependencies.

Version Downloads Last updated
6.0.0-beta1 5 11/17/2024
5.0.0 2 11/19/2024
5.0.0-beta02 4 11/19/2024
5.0.0-beta01 4 11/19/2024
5.0.0-alpha16 5 11/19/2024
5.0.0-alpha15 2 11/19/2024
5.0.0-alpha14 3 11/19/2024
5.0.0-alpha13 3 11/19/2024
5.0.0-alpha12 2 11/19/2024
5.0.0-alpha11 2 11/19/2024
5.0.0-alpha10 2 11/19/2024
5.0.0-alpha09 2 11/19/2024
5.0.0-alpha08 2 11/19/2024
5.0.0-alpha07 5 11/19/2024
5.0.0-alpha06 2 11/19/2024
5.0.0-alpha05 2 11/19/2024
5.0.0-alpha04 4 11/19/2024
5.0.0-alpha03 2 11/19/2024
5.0.0-alpha02 2 11/19/2024
5.0.0-alpha01 3 11/19/2024
4.15.0 3 11/19/2024
4.14.0 2 11/19/2024
4.13.0 3 11/19/2024
4.12.0 4 11/19/2024
4.11.0 2 11/19/2024
4.10.0 4 11/19/2024
4.9.1 2 11/19/2024
4.9.0 2 11/19/2024
4.8.1 3 11/19/2024
4.8.0 3 11/19/2024
4.8.0-beta02 4 11/19/2024
4.8.0-beta01 3 11/19/2024
4.7.0 2 11/19/2024
4.6.0 3 11/19/2024
4.5.1 3 11/19/2024
4.5.0 2 11/19/2024
4.4.1 2 11/19/2024
4.4.0 3 11/19/2024
4.3.0 3 11/19/2024
4.2.0 2 11/19/2024
4.1.0 2 11/19/2024
4.0.0 3 11/19/2024
4.0.0-beta07 3 11/19/2024
4.0.0-beta06 3 11/19/2024
4.0.0-beta05 3 11/19/2024
4.0.0-beta04 5 11/19/2024
4.0.0-beta03 3 11/19/2024
4.0.0-beta02 3 11/19/2024
4.0.0-beta01 3 11/19/2024
4.0.0-alpha04 2 11/19/2024
4.0.0-alpha03 3 11/19/2024
4.0.0-alpha02 2 11/19/2024
4.0.0-alpha01 3 11/19/2024
3.20.2 3 11/19/2024
3.20.1 4 11/19/2024
3.20.0 2 11/19/2024
3.20.0-beta01 4 11/19/2024
3.19.0 3 11/19/2024
3.18.0 2 11/19/2024
3.17.0 4 11/19/2024
3.16.0 2 11/19/2024
3.15.0 2 11/19/2024
3.14.0-beta03 3 11/19/2024
3.14.0-beta02 4 11/19/2024
3.14.0-beta01 5 11/19/2024
3.13.1 3 11/19/2024
3.13.0 2 11/19/2024
3.12.0 3 11/19/2024
3.11.1 3 11/19/2024
3.11.0 2 11/19/2024
3.10.0 2 11/19/2024
3.9.0 2 11/19/2024
3.8.0 2 11/19/2024
3.7.1 3 11/19/2024
3.7.0 2 11/19/2024
3.6.0 3 11/19/2024
3.5.0 3 11/19/2024
3.4.0 2 11/19/2024
3.3.0 3 11/19/2024
3.3.0-beta2 4 11/19/2024
3.3.0-beta1 3 11/19/2024
3.2.3 2 11/19/2024
3.2.2 5 11/19/2024
3.2.1 2 11/19/2024
3.2.0 4 11/19/2024
3.1.0 3 11/19/2024
3.0.2 4 11/19/2024
3.0.1 2 11/19/2024
3.0.0 3 11/19/2024
3.0.0-beta05 4 11/19/2024
3.0.0-beta04 5 11/19/2024
3.0.0-beta03 4 11/19/2024
3.0.0-beta02 3 11/19/2024
3.0.0-beta01 4 11/19/2024
3.0.0-alpha9 2 11/19/2024
3.0.0-alpha8 2 11/19/2024
3.0.0-alpha7 2 11/18/2024
3.0.0-alpha6 4 11/19/2024
3.0.0-alpha5 2 11/19/2024
3.0.0-alpha4 2 11/19/2024
3.0.0-alpha1 3 11/19/2024
2.6.2 2 11/19/2024
2.6.1 2 11/19/2024
2.6.0 3 11/19/2024
2.5.0 3 11/19/2024
2.4.0 2 11/19/2024
2.3.0 2 11/19/2024
2.2.1 2 11/19/2024
2.2.0 3 11/19/2024
2.1.2 3 11/19/2024
2.1.1 3 11/19/2024