MathNet.Numerics 6.0.0-beta2

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .NET 5.0 or higher, .NET Standard 2.0 and .NET Framework 4.6.1 or higher, on Windows, Linux and Mac.

Showing the top 20 packages that depend on MathNet.Numerics.

Packages Downloads
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
13
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
12
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
7
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
6
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
5
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
4
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
3
Akka.Persistence.TCK
Testkit for Persistence actor support for Akka.NET
1

intermediate beta, mainly to verify we can still do releases many contributions, proper release notes with attributions will follow. thank you all!

.NET Framework 4.8

  • No dependencies.

.NET 6.0

  • No dependencies.

.NET 8.0

  • No dependencies.

.NET Standard 2.0

  • No dependencies.

Version Downloads Last updated
6.0.0-beta2 5 03/06/2025
6.0.0-beta1 12 11/17/2024
5.0.0 10 11/19/2024
5.0.0-beta02 13 11/19/2024
5.0.0-beta01 15 11/19/2024
5.0.0-alpha16 14 11/19/2024
5.0.0-alpha15 12 11/19/2024
5.0.0-alpha14 11 11/19/2024
5.0.0-alpha13 10 11/19/2024
5.0.0-alpha12 7 11/19/2024
5.0.0-alpha11 10 11/19/2024
5.0.0-alpha10 7 11/19/2024
5.0.0-alpha09 11 11/19/2024
5.0.0-alpha08 10 11/19/2024
5.0.0-alpha07 10 11/19/2024
5.0.0-alpha06 8 11/19/2024
5.0.0-alpha05 8 11/19/2024
5.0.0-alpha04 11 11/19/2024
5.0.0-alpha03 10 11/19/2024
5.0.0-alpha02 10 11/19/2024
5.0.0-alpha01 11 11/19/2024
4.15.0 13 11/19/2024
4.14.0 11 11/19/2024
4.13.0 11 11/19/2024
4.12.0 13 11/19/2024
4.11.0 10 11/19/2024
4.10.0 14 11/19/2024
4.9.1 7 11/19/2024
4.9.0 9 11/19/2024
4.8.1 10 11/19/2024
4.8.0 8 11/19/2024
4.8.0-beta02 12 11/19/2024
4.8.0-beta01 13 11/19/2024
4.7.0 10 11/19/2024
4.6.0 9 11/19/2024
4.5.1 8 11/19/2024
4.5.0 7 11/19/2024
4.4.1 8 11/19/2024
4.4.0 10 11/19/2024
4.3.0 8 11/19/2024
4.2.0 11 11/19/2024
4.1.0 9 11/19/2024
4.0.0 10 11/19/2024
4.0.0-beta07 11 11/19/2024
4.0.0-beta06 15 11/19/2024
4.0.0-beta05 13 11/19/2024
4.0.0-beta04 14 11/19/2024
4.0.0-beta03 13 11/19/2024
4.0.0-beta02 15 11/19/2024
4.0.0-beta01 14 11/19/2024
4.0.0-alpha04 9 11/19/2024
4.0.0-alpha03 10 11/19/2024
4.0.0-alpha02 10 11/19/2024
4.0.0-alpha01 9 11/19/2024
3.20.2 7 11/19/2024
3.20.1 10 11/19/2024
3.20.0 8 11/19/2024
3.20.0-beta01 10 11/19/2024
3.19.0 8 11/19/2024
3.18.0 8 11/19/2024
3.17.0 11 11/19/2024
3.16.0 12 11/19/2024
3.15.0 12 11/19/2024
3.14.0-beta03 12 11/19/2024
3.14.0-beta02 14 11/19/2024
3.14.0-beta01 12 11/19/2024
3.13.1 10 11/19/2024
3.13.0 10 11/19/2024
3.12.0 10 11/19/2024
3.11.1 10 11/19/2024
3.11.0 10 11/19/2024
3.10.0 11 11/19/2024
3.9.0 9 11/19/2024
3.8.0 6 11/19/2024
3.7.1 9 11/19/2024
3.7.0 10 11/19/2024
3.6.0 10 11/19/2024
3.5.0 10 11/19/2024
3.4.0 8 11/19/2024
3.3.0 9 11/19/2024
3.3.0-beta2 13 11/19/2024
3.3.0-beta1 13 11/19/2024
3.2.3 7 11/19/2024
3.2.2 10 11/19/2024
3.2.1 10 11/19/2024
3.2.0 14 11/19/2024
3.1.0 10 11/19/2024
3.0.2 12 11/19/2024
3.0.1 9 11/19/2024
3.0.0 10 11/19/2024
3.0.0-beta05 14 11/19/2024
3.0.0-beta04 15 11/19/2024
3.0.0-beta03 14 11/19/2024
3.0.0-beta02 13 11/19/2024
3.0.0-beta01 14 11/19/2024
3.0.0-alpha9 10 11/19/2024
3.0.0-alpha8 11 11/19/2024
3.0.0-alpha7 11 11/18/2024
3.0.0-alpha6 13 11/19/2024
3.0.0-alpha5 10 11/19/2024
3.0.0-alpha4 9 11/19/2024
3.0.0-alpha1 10 11/19/2024
2.6.2 9 11/19/2024
2.6.1 10 11/19/2024
2.6.0 9 11/19/2024
2.5.0 9 11/19/2024
2.4.0 10 11/19/2024
2.3.0 9 11/19/2024
2.2.1 8 11/19/2024
2.2.0 9 11/19/2024
2.1.2 10 11/19/2024
2.1.1 11 11/19/2024